Modifikation der Schalenstruktur bei leichten Kernen (A<50)

Schalenmodell

- Magische Zahlen
- Restwechselwirkung
- Modifikation der magischen Zahlen in exotischen neutronenreichen Kernen

N=8 N=20

N=28

Experimentelle Methoden

- Knock-out Reaktionen
- Coulombanregung bei intermediären Energien (einige 10 MeV/u)
- γ-Spektroskopie nach Transfer
- γ-Spektroskopie nach Fragmentation

Schalenmodell

Unabhängige Teilchen in gemeinsamen Potentialtopf:

Zentralpotenzial (z.B. harmonischer Oszillator) → magische Zahlen nicht reproduziert!

+ I²-Korrektur
 → magische Zahlen wieder nicht reproduziert!

+ I⋅s-Term (<u>Spin-Bahn-Kopplung</u>) → magische Zahlen korrekt

Einfache Vorhersagen

Magische Zahlen

- Abgeschlossene Schalen tragen nicht zum totalen Drehimpuls bei!
- Grosse Separationsenergie S_{n/p} bzw. Bindungsenergie (Stabilität)
- Sphärische Kerne
- Grosse Anregungsenergie E(2⁺)
- Kleine B(E2; $0^+ \rightarrow 2^+$)

Schalenmodell – Einfache Vorhersagen

Betrachte j-Orbital:

2j+1 magnetische Unterzustände

Orbital voll besetzt: $J = \sum j_i$ $M = \sum m_i = 0 \rightarrow J = 0$

Jedes voll besetzte j-Orbital und damit jede volle Schale trägt nicht zum Kernspin bei!

Für Kern mit einem Nukleon außerhalb eines vollen Orbitals ist der Kernspin gleich dem Spin dieses letzten Nukleons!

Gefüllte Schale -1

Gefüllte Schale +1

Gefüllte Orbitale +1

Restwechselwirkung 1

Aber: für detaillierte Beschreibung muß noch **Restwechselwirkung** zwischen den Nukleonen betrachtet werden:

$$H = H_0 + H_{RestWW}$$

Wir kennen bereits Paarwechselwirkung

- Weizsäckerscher Massenformel
- Grundzustand von gg-Kernen hat Spin J=0

Multipolentwicklung der Restwechselwirkung:

$$V(\left|\vec{r}_1 - \vec{r}_2\right|) = \sum_k v_k(r_1 r_2) P_k(\cos\theta)$$

- grosse k \Leftrightarrow kurzreichweitige Anteile (z.B. PaarWW)
- kleine k
 langreichweitige Anteile k=0: Monopol (Zentralpotential)
 k=2: Quadrupol

Restwechselwirkung 2

WW eines j-Orbitals mit einer geschlossenen Schale

 f
ür verschiedene j-Orbitale kann die WW mit einer geschlossenen Schale unterschiedlich sein

 f
ür ein j-Orbital kann die WW mit verschiedenen geschlossenen Schalen unterschiedlich sein

Deformation durch p-n-Wechselwirkung

Allein Neutronen außerhalb der geschlossenen Schale führen nicht zu Deformation!!

Es werden sowohl Neutronen als auch Protonen zur Deformation benötigt!!

 $N_p N_n$ -Schema

N_p Anzahl der Protonen N_n Anzahl der Neutronen außerhalb einer abgeschlossenen Schale

⇒ Deformation wird durch <u>p-n-Wechselwirkung</u> getrieben!!

Deformiertes Schalenmodell

... zur Erinnerung

$\omega_z^2 z^2$ $\omega_{\perp}^2 x^2 = \omega_{\perp}^2 y^2$ **Nilsson-Modell** Ζ 10 deformiertes Oszillatorpotenzial • axiale Symmetrie um z-Achse 8 $\omega_x = \omega_y \equiv \omega_\perp$ $\omega_x \cdot \omega_y \cdot \omega_z = \omega_0^3$ $V=m/2^{*}\omega^2 x_i^2$ 6 Hamiltonian 2 $H = -\frac{\hbar^2}{2m}\Delta + \frac{m}{2}\left(\omega_{\perp}^2\left(x^2 + y^2\right) + \omega_z^2 z^2\right) + C \cdot \vec{L} \bullet \vec{S} + D \cdot \vec{L}^2$ 2 X_i Deformationsparameter δ $\omega_{\perp}^2 = \omega_0^2 \left(1 + \frac{2}{3}\delta\right) \qquad \omega_z^2 = \omega_0^2 \left(1 - \frac{4}{3}\delta\right)$ $H = -\frac{\hbar^2}{2m}\Delta + \frac{m}{2}\omega_0^2 r^2 + C \cdot \vec{L} \cdot \vec{S} + D \cdot \vec{L}^2 - m\omega_0^2 r^2 \delta \frac{4}{3}\sqrt{\frac{5}{4\pi}}Y_{20}(\theta, \Phi)$ Schalenmodell mit H.O. Potential

Modifikation der Schalen durch Deformation

-Intruder

Orbital wird soweit angehoben oder abgesenkt, dass es Orbitale aus einer anderen Schale entgegengesetzter Parität kreuzt

Schalen für Kerne mit A<50

Wie bestimmt man die Konfiguration bzw. Wellenfunktion eines Zustands?

Transferreaktionen 1 - Niveauschema

Transferreaktionen 2 - Winkelverteilung

Transferreaktionen 3 – Spektroskopische Faktoren

Vergleich des gemessenen und des theoretischen Wirkungsquerschnitts

Spektroskopischer Faktor

Der spektroskopische Faktor misst, wie gut ein realer Zustand mit einem Schalenmodellzustand überlappt:

$$S \propto \left| \left\langle \Phi_i({}^{90}Zr) \otimes \phi_{SM}(n) \right| \Phi_f({}^{91}Zr) \right\rangle \right|^2$$

n_{11/2}

3s_{1/2}

1g_{7/2}

 $2d_{5/2}$

1g_{9/2}

Restwechselwirkung mischt Konfigurationen → reale Zustände oft keine guten Schalenmodellzustände

Knock-out Reaktion

Exotische radioaktive Kerne existieren nur als Strahl, nicht als Target

- Transferreaktion in inverser Kinematik,
 z. B. d(A,A+1)p (bei Energien ≈MeV/u)
- Knock-out Reaktion (bei Energien ≈10-100 MeV/u)

Wirkungsquerschnitt für Knock-out

Wirkungsquerschnitt für Endzustand I^{π}

$$\sigma(nI^{\pi}) = \sum_{j} S(nI^{\pi}, lj) \quad \sigma_{sp}(B_N, lj)$$

Spektroskopischer Faktor: Überlapp zwischen Zuständen im Eingangs- und Ausgangskanal Wirkungsquerschnitt ein Nukleon aus einem Einteilchenzustand (*Ij*) und Separationsenergie B_N herauszuschlagen

n-Wellenfunktion des Grundzustands von ¹²Be (N=8)

¹²Be: N=8 \Rightarrow Grundzustand hat reine $(0s)^2 - (0p)^6$ Konfiguration (abgekürzt als $(0p)^8$) SM-Rechnungen: Konfigurationen $(0p)^8$ und $(0p)^6 - (1s, 0d)^2$ nahezu entartet \Rightarrow Grundzustand wird Mischung aus beiden:

 $\Phi = \alpha \ (0p)^8 + \beta \ \{ (0p)^6 \otimes [\gamma_1 \ (0d_{5/2})^2 + \gamma_2 \ (1s_{1/2})^2 + \gamma_3 \ (0d_{3/2})^2] \}$

(Amplituden $\gamma_{1,2,3}$ aus SM-Rechnung; J=0-Paare energetisch bevorzugt!)

¹¹Be: Reihenfolge in der *sd*-Schale: $1s_{1/2}$, $0d_{5/2}$ und $0d_{3/2}$ Grundzustand hat Intruder-Konfiguration

Experiment: Knock-out eines n aus ¹²Be

 $\Phi(^{12}\text{Be}) = \alpha \ (0p)^8 \\ + \beta \ \{(0p)^6 \otimes [\gamma_1 \ (0d_{5/2})^2 + \gamma_2(1s_{1/2})^2 + \gamma_3(0d_{3/2})^2]\}$

Knock-out eines der Neutronen aus ¹²Be

$0p_{1/2} \rightarrow$	1/2 ⁻ - Zustand in ¹¹ Be	I=1 Neutron
$1s_{1/2} \rightarrow$	1/2 ⁺ - Zustand in ¹¹ Be	I=0 Neutron
$0d_{5/2} \rightarrow$	5/2 ⁺ - Zustand in ¹¹ Be	I=2 Neutron

Spektroskopischer Faktor

$$S = \frac{A-1}{A} \quad n \quad \left| \left\langle \Phi(^{11}\text{Be}) \otimes \phi(n) \middle| \Phi(^{12}\text{Be}) \right\rangle \right|^2$$
$$= \frac{A-1}{A} \quad n \quad (c.f.p.)^2$$
, "coefficient of fractional parentage"

Beipiel: Berechnung von spektroskopischen Faktoren

 $S = \frac{A-1}{A} n \left| \left\langle \Phi(^{11}\text{Be}) \otimes \phi(n) \middle| \Phi(^{12}\text{Be}) \right\rangle \right|^2$ $= \frac{A-1}{A} n \left(c.f.p. \right)^2$ B.3. Coefficients

Beispiel: 1 Neutron aus $(0p_{1/2})^2$ -Orbital herausschlagen

B.3. Coefficients of fractional parentage

The coefficients of fractional parentage $\langle j^n JTvt | \} j^{n-1} J'T'v't' \rangle$ for $j = \frac{1}{2}, \frac{3}{2}$ and $\frac{5}{2}$ with $n \leq 3$ are given below. The state j^n is characterized by the quantum numbers J (total spin), T (total isospin), v (seniority) and t (reduced isospin). The phase convention corresponds to that of the Oak Ridge-Rochester shell-model code [French, Halbert, McGrory and Wong (1969); McGrory (1967)].

n = 1 or 2; for all <i>j</i> -values			⟨j ⁿ JTvt	$]j^{n-1}J'T'v'$	$\langle t' \rangle = +1$	
$n = 3; j = \frac{1}{2}$	$\langle (\frac{1}{2})^3 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$\left \frac{1}{2}\right ^2 0 1 ($) 0) = _0.70	71 $((\frac{1}{2})^3)$	$\frac{1}{2}$ $\frac{1}{2}$ 1 $\frac{1}{2}$	$\left\{ \left(\frac{1}{2}\right)^2 \ 1 \ 0 \ 2 \ 0 \right\} = +0.7071$
$n = 3; j = \frac{3}{2}$	$(\frac{3}{2})^2$	(JTvt)				
	$(\frac{3}{2})^3$	(0100)	(1020)	(2121)	(3020)	
	(J'T'v't')					
	$(\frac{1}{2},\frac{1}{2},3,\frac{1}{2})$	0	-0.7071	-0.7071	0	
	$\left(\frac{3}{2} \frac{1}{2} 1 \frac{1}{2}\right)$	-0.6455	+0.3873	-0.2887	+0.591	6
	$\left(\frac{3}{2} \ \frac{3}{2} \ 1 \ \frac{1}{2}\right)$	+0.4082	0	-0.9129	0	
	$\left(\frac{5}{2} \frac{1}{2} 3 \frac{1}{2}\right)$	0	+0.4830	-0.7071	0.516	4
	$\left(\frac{7}{2} \frac{1}{2} 3 \frac{1}{2}\right)$	0	0	-0.7071	+0.707	1

Experimentaufbau (schematisch)

A800-Spektrograph@MSU

Knock-out eines n aus ¹²Be (N=8) @ 78 MeV/u

Messung der Impulsverteilung erlaubt Bestimmung des Drehimpulsesübertrags

Analyse: Knock-out eines n aus ¹²Be

j [#]	E (MeV)	$\sigma_{ m exp}$ (mb)	$\sigma_{ m sp}$ (mb)	S _{exp}	S [*] _{exp}	WBT	S _{th} WBT2
$\frac{1}{2^{+}}$	0	32.0 ± 4.7	75.9	0.42 ± 0.10	0.53 ± 0.13	0.51	0.69
$1/2^{-}$	0.32	17.5 ± 2.6	47.2	0.37 ± 0.10	0.45 ± 0.12	0.91	0.58
5/2+	1.8	• • •	•••	• • •		0.40	0.55

$$\begin{split} & \Phi_{gs}(^{12}\text{Be}) = \alpha \ (0p)^8 \\ &+ \beta \ \{(0p)^6 \otimes [\gamma_1 \ (0d_{5/2})^2 + \gamma_2(1s_{1/2})^2 + \gamma_3(0d_{3/2})^2]\} \\ & \text{g.s. von} \ ^{12}\text{Be ist eine reine} \ (0p)^8 \ \text{Konfiguration} \\ & \text{S}(1/2^-) = 1.82, \ \text{S}(1/2^+) = 0 \ \text{und} \ \text{S}(5/2^+) = 0 \\ & \text{g.s. von} \ ^{12}\text{Be ist} \ \text{Mischung aus} \ (0p)^8 \ \text{und} \ (0p)^6 - (1s, 0d)^2 \\ & \text{S}(1/2^-) = 1.82 \ \text{reiner} \ (0p)^8 \rightarrow (0p)^7 \\ & \text{S}(1/2^+) = 1.02 \ \text{reiner} \ (0p)^6 - (1s, 0d)^2 \rightarrow (0p)^6 - (1s, 0d)^1 \end{split}$$

 $S(5/2^+) = 0.81$ reiner $(0p)^6 - (1s, 0d)^2 \rightarrow (0p)^6 - (1s, 0d)^1$

Verteilung der Stärke auf die Komponenten im Grundzustand von ¹²Be:

WBT: $50\% (0p)^8$ und $50\% (0p)^6$ - $(1s,0d)^2$ WBT2: $32\% (0p)^8$ und $68\% (0p)^6$ - $(1s,0d)^2$

.... $S(1/2)_{exp} = 0.45$ impliziert sogar, dass die Konfiguration $(0p)^8$ im Grundzustand von ¹²Be nur für 25% der Stärke verantwortlich ist!!!

Kerne um N=20

Es ist sinnvoll die Orbitale unter Berücksichtigung der Rest-WW für jede Kombination N und Z darzustellen

→ Effektive Einteilchenenergien (ESPE) Einteilchenenergien unter Berücksichtigung der Rest-WW

... welches ist das schwerste gebundene Sauerstoff-Isotop????

Fragmentseparator – als Beispiel FRS@GSI

Position x-y \rightarrow Bahn $B\rho \rightarrow p$, A/ZTOF \rightarrow v \rightarrow AdE/dx \rightarrow Z

Typisches Experiment

Ergebnisse 1 (N=16)

Sauerstoff-Isotope:

²⁴O (N=16) ist gebunden ✓

²⁸O ist nicht gebunden ✓

+ 1 Proton → Fluor

³¹F ist gebunden!!!!

... ein Proton mehr kann weitere 6 Neutronen binden!!!

Theorie: στ-στ-Wechselwirkung 1

Nukleon-Nukleon-Restwechselwirkung

Ansatz (Monopol-Hamiltonian):

Zwei-Körper-Matrixelement

$$V_{j_1 j_2}^{T=0,1} = \frac{\sum_J (2J+1) \langle j_1 j_2 | V | j_1' j_2' \rangle_{JT}}{\sum_J (2J+1)}$$

z.B. Pairing (Monopol-Anteil):

$$V_{Pair} = V_{jj}^{T=1}$$

στ-στ-Wechselwirkung
$$V_{\sigma\tau} = \tau \cdot \tau \ \sigma \cdot \sigma \ f_{\tau\sigma}(r)$$

Eigenschaften:

- langreichweitiges $f_{\tau\sigma}(r)$ koppelt $V_{\tau\sigma}$ nur Zustände mit gleichen Drehimpuls I, also j_>=I+1/2 und j_<=I-1/2
- σ koppelt Spin-Orbit-Partner j_> und j_< stärker als j_> bzw. j_< jeweils untereinander, bevorzugt also Spinflips
- τ bevorzugt Ladungsaustauschprozesse

Theorie: στ-στ-Wechselwirkung 2

Ohne Protonen im $d_{5/2}$ -Orbital (Z \leq 8), d.h. für neutronenreiche Kerne, ist N=16 magische Zahl.

Durch attraktive NN-Restwechselwirkung zwischen Protonen im $d_{5/2}$ -Orbital und Neutronen im $d_{3/2}$ -Orbital wird der Abstand zwischen beiden verringert

⇒ wenn das d_{5/2}-Orbital durch Protonen aufgefüllt wird,
 von Z=9 (F) bis Z=14 (Si), wird aus der magischen Zahl
 N=16 für neutronenreiche Kerne die bekannte
 magische Zahl N=20 für stabile Kerne.

Ein-Boson-Austauschpotenziale (π , ρ , ...) haben gerade Terme

des Typs $V_{\sigma\tau} = \tau \cdot \tau \ \sigma \cdot \sigma \ f_{\tau\sigma}(r)$

als Hauptbeiträge!!!

Anwendung auf andere Schalen

N=6

⁸He existiert, ⁹He hingegen nicht. Neutronen im $p_{1/2}$ -Orbital sind ungebunden ohne Protonen im $p_{3/2}$ -Orbital, ihrem Spin-Orbit-Partner. Die magische Neutronenzahl ist hier N=6!! Erst wenn die Protonen das $p_{3/2}$ -Orbital bevölkern, wird das $p_{1/2}$ -Orbital der Neutronen abgesenkt und die gewohnte magische Zahl N=8 entsteht.

N=34 WW zwischen f_{7/2} und f_{5/2}

Existenz von Kernen 🗸

E(2⁺), B(E2), ?

γ-Spektroskopie nach Fragmentierung

SPEG+EXOGAM@GANIL

Form von ²⁴O

²⁴O ist gebunden, aber ist es auch sphärisch?

 γ -Spektroskopie \Rightarrow E(2⁺)

Unklar, ob ²⁴O überhaupt einen gebundenen angeregten Zustand hat

Aber: erste angeregte Zustände in ²⁵F liegen sehr hoch und lassen sich als Kopplung eines $d_{5/2}$ -Protons an einen > 3 MeV liegenden 2⁺ in ²⁴O interpretieren

→ ²⁴O ist <u>sphärischer Kern</u>

Evolution der magischen Zahlen von N=16 nach N=20

Außerhalb von N=16

Ne (Z=10, also 2 Protonen außerhalb von Z=8) Die Energie des ersten 2⁺ sinkt stark ab, wenn zwei Neutronen außerhalb von N=16 zugefügt werden

→ pn-Wechselwirkung treibt

Deformation!!!

Deformation bei N=20

Nur sd-pf-Rechnung beschreibt Verhalten korrekt!!!

Intermediäre Coulombanregung

Coulombanregung von Mg

³²Mg: $E(4^+)/E(2^+) = 2.6$ ³⁴Mg: $E(4^+)/E(2^+) = 3.2$ Rotator: $E(4^+)/E(2^+) = 10/3$

2n-Transfer in sphärischen 0⁺ von ³²Mg (1)

Nukleonentransfer findet bevorzugt in Zustände gleicher Form statt

2n-Transfer in sphärischen 0⁺ von ³²Mg (2)

2n-Transfer in sphärischen 0⁺ von ³²Mg (3)

γ-Spektroskopie an REX-ISOLDE mit MINIBALL

Schwefel-Isotope

Offenbar ist der Schalenabschluß bei N=28 "aufgeweicht"

B(E2)-Werte in Mg

Ergebnisse 2 (N=16)

N=16

- E(2⁺) hoch

 Zustände in ^{23,25}F lassen sich "weak coupling" eines Neutrons an ^{22,24}O-Kern interpretieren

Restwechselwirkung 2

keine Coulombwechselwirkung

γ-Spektroskopie nach tiefinelastischem Nukleonentransfer